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Today’s Lecture

 Stack (Linked)
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Goals

• Describe a stack and its operations at a 
logical level   

• Demonstrate the effect of stack operations
using a particular implementation of a 
stack

• Implement the Stack ADT, in both an 
array-based implementation and a linked 
implementation
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Stacks of Coins and Bills
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Stacks of Boxes and Books

TOP OF THE STACK TOP OF THE STACK
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Stack

What do these composite objects all have 
in common? 
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Stack

Stack

An abstract data type in which elements are 
added and removed from only one end 
(LIFO)
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Stack

What operations would be appropriate for a 
stack?

8

© 2022 Arthur Hoskey. All 
rights reserved.



Stacks

 Transformers 
◦ Push
◦ Pop

 Observers 
◦ IsEmpty
◦ IsFull
◦ Top



change state

observe state
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Stack

Here is the interface for the Stack ADT:

public interface Stack {
void push(int item) throws Exception;
void pop() throws Exception;
int top() throws Exception;
void makeEmpty();

boolean isEmpty();
boolean isFull();

}

Same methods 
as for the array-

based 
implementation
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Stack

 What does a stack look like if we insert 
the following elements (in the given 
order):
11, 14, 32
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Stack

 Insert: 11, 14, 32
 Which stack was created from the above 

insertions?
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Stack A Stack B

11

14

32Top

32

14

11Top



Stack

 Insert: 11, 14, 32
 Answer: Stack A occurs with the above 

insertions.
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Stack A Stack B

11

14

32Top

32

14

11Top



Stack (Linked)

 Now we will move on to the linked 
implementation of the stack.
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StackLinked Class

 We will write an StackLinked class that 
implements our Stack interface. 

public class StackLinked implements Stack
{

// Implementation code goes here…
}
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Node

 The linked stack data structure requires that we keep more 
information at EACH place inside of it.

 Each item in the stack will be a "Node" (not just the data).
 A node stores the data and a reference to the next node
 It should be defined as an inner class within the 

StackLinked class.

class Node {
Declare int data
Declare Node next

}
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Data for this node (change 
data type as necessary to 
store other types of data)

Points to next 
node in list



Stack (Linked)

 Link-based private members
class StackLinked implements Stack {

Declare Node top

// Public members go here…
}
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Stack (Linked)

s.push(83) 
s.push(50)
s.push(11)
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Stack

data: 11 

next: 

top

data: 50

next: 

data: 83 

next: 

Assume the 
stack has 3 
elements 

pushed on to it



Stack (Linked) - Push

 Where would a new item go? How is it 
inserted?
s.push(77)
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Stack

data: 11 

next: 

top

data: 50

next: 

data: 83 

next: 



Stack (Linked) - push

You MUST push the item on to the top of the 
stack.

push Pseudocode

1. Create a new Node item (dynamically allocate).

2. Set the fields on the new Node item. This 
means setting the data item and the next 
pointer. The next pointer should be set to the 
current top.

3. Set the top pointer to the new Node Item.
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Stack (Linked) - push

s.push(77)

1. Create a new Node item (dynamically allocate).
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Stack

data: 11 

next: 

top

data: 50

next: 

data: 83 

next: 

Data:

next: 

temp



Stack (Linked) - push

s.push(77)

2. Set the fields on the new Node item. Set data item and 
next pointer. Next points to current top.
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Stack

data: 11 

next: 

top

data: 50

next: 

data: 83 

next: 

data: 77

next: 

temp



Stack (Linked) - push

s.push(77)

3. Set the top pointer to the new NodeType Item.
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Stack

data: 11 

next: 

top

data: 50

next: 

data: 83 

next: 

data: 77

next: 

temp



Stack (Linked) - push

s.push(77)

When the push method ends the temp pointer will go out of 
scope and disappear.
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Stack

data: 11 

next: 

top

data: 50

next: 

data: 83 

next: 

data: 77

next: 

temp



Stack (Linked) - push

This picture is LOGICALLY EQUIVALENT to the 
previous slide!!!
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Stack

data: 77

next: 

top

data: 11

next: 

data: 50

next: 

data: 83

next: 



Stack (Linked) - push

push(int item) throws Exception 
if (stack is full) 

throw exception "Full Stack"
else 

Declare Node temp
Set temp to new Node instance
Set temp.data to item
Set temp.next to top
Set top to temp

Allocate a new node

Set values on 
the new node

Place the new 
node at the top 

of the stack
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Stack (Linked) - pop

pop Pseudocode

1. Create a temporary pointer to the top node.

2. Update the top pointer so that it points to the second 
item in the stack.

3. Deallocate the memory pointed to by the temporary 
pointer (the old top node).
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Stack (Linked) - pop

s.pop()
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Stack

data: 77

next: 

top

data: 11

next: 

data: 50

next: 

data: 83

next: 



Stack (Linked) - pop

1. Create a temporary pointer to the top node.
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Stack

data: 77

next: 

top

data: 11

next: 

data: 50

next: 

data: 83

next: 

temp



Stack (Linked) - pop

2. Update the top pointer so that it points to the 
second item in the stack.
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Stack

data: 77

next: 

top

data: 11

next: 

data: 50

next: 

data: 83

next: 

temp



Stack (Linked) - pop

3. Deallocate the memory pointed to by the 
temporary pointer (the old top node).
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Stack

data: 77

next: 

top

data: 11

next: 

data: 50

next: 

data: 83

next: 

temp



Stack (Linked) - pop

The temp pointer will disappear when the Pop 
method ends.
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Stack

data: 77

next: 

top

data: 11

next: 

data: 50

next: 

data: 83

next: 

temp



Stack (Linked) - pop

This picture is LOGICALLY EQUIVALENT to the 
previous slide!!!
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Stacktop

data: 11

next: 

data: 50

next: 

data: 83

next: 



Stack (Linked) - pop

pop() returns int and throws exception
Declare int data
if (stack is empty)

throw exception "Empty Stack"
else

Set data to top.data

Declare Node temp
Set temp to top

Set top to top.next
Set temp to null

return data

Create a temporary 
pointer to the top node

Now set top to the second item

Release memory for the 
old top node 

(will become a candidate 
for garbage collection)
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Stack (Linked) – Constructor and 
isEmpty

StackLinked Constructor

Set top to null

isEmpty() returns boolean

return top equals null

Constructor

IsEmpty
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Stack (Linked) - isFull

isFull() returns boolean
Declare Node location
try 

Set location to new Node instance
Set location to null
return false

catch (OutOfMemoryError ome)
return true
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Check to see if 
you can allocate 

memory.

If you CAN, then 
the list is NOT full 

so return false.

If you CANNOT 
allocate memory, 

then the list is full.



Stack

 To get data from the stack you need to 
call the top() method (for this particular 
ADT).

 Note: There are other Stack ADTs where 
the pop() method actually returns the 
value of the top item.
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Stack (Linked) - top

int top() throws Exception

if (stack is empty) 

throw exception "Empty Stack"

return top.data
Return the data in 

the top node.
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Stack (Linked) – makeEmpty

makeEmpty()
Set top to null
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Deletes ALL of the 
elements in the 

stack.

Make top null. 

All nodes in the stack are now 
unreferenced so they will become 
candidates for garbage collection



Stack (Linked) – Big O

 What are the Big-O runtimes for the 
linked implementation of a stack?
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Stack (Linked) – Big O

Operation Cost

isFull O(1)

isEmpty O(1)

push O(1)

pop O(1)

makeEmpty O(1)

Constructor O(1)
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End of Slides

 End of Slides
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