
Data Structures
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2022 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Stack (Linked)

© 2022 Arthur Hoskey. All
rights reserved.

Goals

• Describe a stack and its operations at a
logical level

• Demonstrate the effect of stack operations
using a particular implementation of a
stack

• Implement the Stack ADT, in both an
array-based implementation and a linked
implementation

© 2022 Arthur Hoskey. All
rights reserved.

Stacks of Coins and Bills
© 2022 Arthur Hoskey. All
rights reserved.

Stacks of Boxes and Books

TOP OF THE STACK TOP OF THE STACK

© 2022 Arthur Hoskey. All
rights reserved.

Stack

What do these composite objects all have
in common?

© 2022 Arthur Hoskey. All
rights reserved.

Stack

Stack

An abstract data type in which elements are
added and removed from only one end
(LIFO)

© 2022 Arthur Hoskey. All
rights reserved.

Stack

What operations would be appropriate for a
stack?

8

© 2022 Arthur Hoskey. All
rights reserved.

Stacks

 Transformers
◦ Push
◦ Pop

 Observers
◦ IsEmpty
◦ IsFull
◦ Top



change state

observe state

9

© 2022 Arthur Hoskey. All
rights reserved.

Stack

Here is the interface for the Stack ADT:

public interface Stack {
void push(int item) throws Exception;
void pop() throws Exception;
int top() throws Exception;
void makeEmpty();

boolean isEmpty();
boolean isFull();

}

Same methods
as for the array-

based
implementation

© 2022 Arthur Hoskey. All
rights reserved.

Stack

 What does a stack look like if we insert
the following elements (in the given
order):
11, 14, 32

© 2022 Arthur Hoskey. All
rights reserved.

Stack

 Insert: 11, 14, 32
 Which stack was created from the above

insertions?

© 2022 Arthur Hoskey. All
rights reserved.

Stack A Stack B

11

14

32Top

32

14

11Top

Stack

 Insert: 11, 14, 32
 Answer: Stack A occurs with the above

insertions.

© 2022 Arthur Hoskey. All
rights reserved.

Stack A Stack B

11

14

32Top

32

14

11Top

Stack (Linked)

 Now we will move on to the linked
implementation of the stack.

© 2022 Arthur Hoskey. All
rights reserved.

StackLinked Class

 We will write an StackLinked class that
implements our Stack interface.

public class StackLinked implements Stack
{

// Implementation code goes here…
}

© 2022 Arthur Hoskey. All
rights reserved.

Node

 The linked stack data structure requires that we keep more
information at EACH place inside of it.

 Each item in the stack will be a "Node" (not just the data).
 A node stores the data and a reference to the next node
 It should be defined as an inner class within the

StackLinked class.

class Node {
Declare int data
Declare Node next

}

© 2022 Arthur Hoskey. All
rights reserved.

Data for this node (change
data type as necessary to
store other types of data)

Points to next
node in list

Stack (Linked)

 Link-based private members
class StackLinked implements Stack {

Declare Node top

// Public members go here…
}

© 2022 Arthur Hoskey. All
rights reserved.

Stack (Linked)

s.push(83)
s.push(50)
s.push(11)

© 2022 Arthur Hoskey. All
rights reserved.

Stack

data: 11

next:

top

data: 50

next:

data: 83

next:

Assume the
stack has 3
elements

pushed on to it

Stack (Linked) - Push

 Where would a new item go? How is it
inserted?
s.push(77)

© 2022 Arthur Hoskey. All
rights reserved.

Stack

data: 11

next:

top

data: 50

next:

data: 83

next:

Stack (Linked) - push

You MUST push the item on to the top of the
stack.

push Pseudocode

1. Create a new Node item (dynamically allocate).

2. Set the fields on the new Node item. This
means setting the data item and the next
pointer. The next pointer should be set to the
current top.

3. Set the top pointer to the new Node Item.

© 2022 Arthur Hoskey. All
rights reserved.

Stack (Linked) - push

s.push(77)

1. Create a new Node item (dynamically allocate).

© 2022 Arthur Hoskey. All
rights reserved.

Stack

data: 11

next:

top

data: 50

next:

data: 83

next:

Data:

next:

temp

Stack (Linked) - push

s.push(77)

2. Set the fields on the new Node item. Set data item and
next pointer. Next points to current top.

© 2022 Arthur Hoskey. All
rights reserved.

Stack

data: 11

next:

top

data: 50

next:

data: 83

next:

data: 77

next:

temp

Stack (Linked) - push

s.push(77)

3. Set the top pointer to the new NodeType Item.

© 2022 Arthur Hoskey. All
rights reserved.

Stack

data: 11

next:

top

data: 50

next:

data: 83

next:

data: 77

next:

temp

Stack (Linked) - push

s.push(77)

When the push method ends the temp pointer will go out of
scope and disappear.

© 2022 Arthur Hoskey. All
rights reserved.

Stack

data: 11

next:

top

data: 50

next:

data: 83

next:

data: 77

next:

temp

Stack (Linked) - push

This picture is LOGICALLY EQUIVALENT to the
previous slide!!!

© 2022 Arthur Hoskey. All
rights reserved.

Stack

data: 77

next:

top

data: 11

next:

data: 50

next:

data: 83

next:

Stack (Linked) - push

push(int item) throws Exception
if (stack is full)

throw exception "Full Stack"
else

Declare Node temp
Set temp to new Node instance
Set temp.data to item
Set temp.next to top
Set top to temp

Allocate a new node

Set values on
the new node

Place the new
node at the top

of the stack

© 2022 Arthur Hoskey. All
rights reserved.

Stack (Linked) - pop

pop Pseudocode

1. Create a temporary pointer to the top node.

2. Update the top pointer so that it points to the second
item in the stack.

3. Deallocate the memory pointed to by the temporary
pointer (the old top node).

© 2022 Arthur Hoskey. All
rights reserved.

Stack (Linked) - pop

s.pop()

© 2022 Arthur Hoskey. All
rights reserved.

Stack

data: 77

next:

top

data: 11

next:

data: 50

next:

data: 83

next:

Stack (Linked) - pop

1. Create a temporary pointer to the top node.

© 2022 Arthur Hoskey. All
rights reserved.

Stack

data: 77

next:

top

data: 11

next:

data: 50

next:

data: 83

next:

temp

Stack (Linked) - pop

2. Update the top pointer so that it points to the
second item in the stack.

© 2022 Arthur Hoskey. All
rights reserved.

Stack

data: 77

next:

top

data: 11

next:

data: 50

next:

data: 83

next:

temp

Stack (Linked) - pop

3. Deallocate the memory pointed to by the
temporary pointer (the old top node).

© 2022 Arthur Hoskey. All
rights reserved.

Stack

data: 77

next:

top

data: 11

next:

data: 50

next:

data: 83

next:

temp

Stack (Linked) - pop

The temp pointer will disappear when the Pop
method ends.

© 2022 Arthur Hoskey. All
rights reserved.

Stack

data: 77

next:

top

data: 11

next:

data: 50

next:

data: 83

next:

temp

Stack (Linked) - pop

This picture is LOGICALLY EQUIVALENT to the
previous slide!!!

© 2022 Arthur Hoskey. All
rights reserved.

Stacktop

data: 11

next:

data: 50

next:

data: 83

next:

Stack (Linked) - pop

pop() returns int and throws exception
Declare int data
if (stack is empty)

throw exception "Empty Stack"
else

Set data to top.data

Declare Node temp
Set temp to top

Set top to top.next
Set temp to null

return data

Create a temporary
pointer to the top node

Now set top to the second item

Release memory for the
old top node

(will become a candidate
for garbage collection)

© 2022 Arthur Hoskey. All
rights reserved.

Stack (Linked) – Constructor and
isEmpty

StackLinked Constructor

Set top to null

isEmpty() returns boolean

return top equals null

Constructor

IsEmpty

© 2022 Arthur Hoskey. All
rights reserved.

Stack (Linked) - isFull

isFull() returns boolean
Declare Node location
try

Set location to new Node instance
Set location to null
return false

catch (OutOfMemoryError ome)
return true

© 2022 Arthur Hoskey. All
rights reserved.

Check to see if
you can allocate

memory.

If you CAN, then
the list is NOT full

so return false.

If you CANNOT
allocate memory,

then the list is full.

Stack

 To get data from the stack you need to
call the top() method (for this particular
ADT).

 Note: There are other Stack ADTs where
the pop() method actually returns the
value of the top item.

© 2022 Arthur Hoskey. All
rights reserved.

Stack (Linked) - top

int top() throws Exception

if (stack is empty)

throw exception "Empty Stack"

return top.data
Return the data in

the top node.

© 2022 Arthur Hoskey. All
rights reserved.

Stack (Linked) – makeEmpty

makeEmpty()
Set top to null

© 2022 Arthur Hoskey. All
rights reserved.

Deletes ALL of the
elements in the

stack.

Make top null.

All nodes in the stack are now
unreferenced so they will become
candidates for garbage collection

Stack (Linked) – Big O

 What are the Big-O runtimes for the
linked implementation of a stack?

© 2022 Arthur Hoskey. All
rights reserved.

Stack (Linked) – Big O

Operation Cost

isFull O(1)

isEmpty O(1)

push O(1)

pop O(1)

makeEmpty O(1)

Constructor O(1)

© 2022 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2022 Arthur Hoskey. All
rights reserved.

